Mechanically induced intramolecular electron transfer in a mixed-valence molecular shuttle.
نویسندگان
چکیده
The kinetics and thermodynamics of intramolecular electron transfer (IET) can be subjected to redox control in a bistable [2]rotaxane comprised of a dumbbell component containing an electron-rich 1,5-dioxynaphthalene (DNP) unit and an electron-poor phenylene-bridged bipyridinium (P-BIPY(2+)) unit and a cyclobis (paraquat-p-phenylene) (CBPQT(4+)) ring component. The [2]rotaxane exists in the ground-state co-conformation (GSCC) wherein the CBPQT(4+) ring encircles the DNP unit. Reduction of the CBPQT(4+) leads to the CBPQT(2(•+)) diradical dication while the P-BIPY(2+) unit is reduced to its P-BIPY(•+) radical cation. A radical-state co-conformation (RSCC) results from movement of the CBPQT(2(•+)) ring along the dumbbell to surround the P-BIPY(•+) unit. This shuttling event induces IET to occur between the pyridinium redox centers of the P-BIPY(•+) unit, a property which is absent between these redox centers in the free dumbbell and in the 1:1 complex formed between the CBPQT(2(•+)) ring and the radical cation of methyl-phenylene-viologen (MPV(•+)). Using electron paramagnetic resonance (EPR) spectroscopy, the process of IET was investigated by monitoring the line broadening at varying temperatures and determining the rate constant (k(ET) = 1.33 x 10(7) s(-1)) and activation energy (ΔG(‡) = 1.01 kcal mol(-1)) for electron transfer. These values were compared to the corresponding values predicted, using the optical absorption spectra and Marcus-Hush theory.
منابع مشابه
Intrachain electron transfer in conducting oligomers and polymers: the mixed valence approach.
Organic mixed valence compounds consisting of bisdiarylamino charge-bearing units with an oligothiophene bridge and oligothiophene radical cations have been compared using molecular modeling. The study has been performed with oligomers of 1 to 22 thiophene units. These two series of molecules have several properties in common, and intramolecular Single Electron Transfer (SET) in both series can...
متن کاملElectric-field-driven electron-transfer in mixed-valence molecules.
Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-var...
متن کاملCurrent trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions.
Mixed-valence chemistry has a long and rich history which is characterised by a strong interplay of experimental, theoretical and computational studies. The intervalence charge transfer (IVCT) transitions generated in dinuclear mixed-valence species (particularly of ruthenium and osmium) have received considerable attention in this context, as they provide a powerful and sensitive probe of the ...
متن کاملStereochemical effects on intervalence charge transfer
Recent work has revealed the first observation of stereochemical effects on intervalence charge transfer (IVCT) in diand trinuclear mixed-valence complexes. The differential IVCT characteristics of the diastereoisomers of polypyridyl complexes of ruthenium and osmium offer a new and intimate probe of the fundamental factors that govern the extent of electronic delocalization and the barrier to ...
متن کاملExtended Near-Infrared Resonance Raman Investigations of an Organic Mixed-Valence System: Diazatetracyclodiene Radical Cation
Resonance Raman scattering studies in the extended near-infrared region show that six modes are coupled to the intramolecular charge-transfer transition in the mixed-valence radical cation diazatetracyclodiene. Spectral analysis based on time-dependent scattering theories shows that all six modes make substantial contributions to the vibrational reorganization energy. Measured Raman scattering ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 29 شماره
صفحات -
تاریخ انتشار 2012